首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61046篇
  免费   9339篇
  国内免费   5141篇
电工技术   8669篇
技术理论   2篇
综合类   6173篇
化学工业   5180篇
金属工艺   2334篇
机械仪表   6207篇
建筑科学   2921篇
矿业工程   2094篇
能源动力   3085篇
轻工业   3273篇
水利工程   1609篇
石油天然气   2675篇
武器工业   860篇
无线电   4657篇
一般工业技术   5255篇
冶金工业   1931篇
原子能技术   375篇
自动化技术   18226篇
  2024年   234篇
  2023年   1404篇
  2022年   2558篇
  2021年   2727篇
  2020年   2950篇
  2019年   2507篇
  2018年   2242篇
  2017年   2758篇
  2016年   3062篇
  2015年   3409篇
  2014年   4839篇
  2013年   4610篇
  2012年   5332篇
  2011年   5348篇
  2010年   3694篇
  2009年   3913篇
  2008年   3460篇
  2007年   3882篇
  2006年   3213篇
  2005年   2607篇
  2004年   2080篇
  2003年   1665篇
  2002年   1415篇
  2001年   1121篇
  2000年   884篇
  1999年   596篇
  1998年   552篇
  1997年   454篇
  1996年   375篇
  1995年   348篇
  1994年   270篇
  1993年   210篇
  1992年   175篇
  1991年   145篇
  1990年   123篇
  1989年   102篇
  1988年   64篇
  1987年   25篇
  1986年   27篇
  1985年   14篇
  1984年   17篇
  1983年   19篇
  1982年   22篇
  1981年   9篇
  1980年   15篇
  1979年   13篇
  1978年   6篇
  1977年   5篇
  1959年   4篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
91.
李昭  王晓丽  罗浩  熊勋昌 《建筑施工》2021,43(3):472-474
以成都天府国际机场国航基地工程(机务维修一期)101号维修机库大跨度边桁架中的预应力钢绞线施工为背景,针对预应力钢绞线超长、单束钢绞线数量多、钢绞线穿束时质量大、摩擦力大等难点,提出钢绞线设计分束优化、增加增强隔板、研发穿束牵引装置等方案,通过实施该方案,减小了穿管时的牵引力,大大降低了钢绞线穿管损伤风险,同时大幅节省了穿管措施费用。  相似文献   
92.
The main object of this research is the development of a mathematical framework to simulate a commercial ammonia plant and obtaining the optimal operating conditions of process at steady state condition. The considered ammonia plant consists of steam and autothermal reforming reactors, low and high temperature shift converters, hydrogen purification section, methanation, and ammonia synthesis reactors. The catalytic reactors are heterogeneously modeled based on the mass and energy balance equations considering heat and mass transfer resistances in the gas and catalyst phases. In addition, an equilibrium model is applied to simulate the absorption column. Then, the accuracy of developed framework is investigated against plant data. The results show that the internal mass transfer resistance in the commercial catalyst limits the syngas production in the reforming section. In the second step, an optimization problem is formulated to enhance the ammonia production considering safety and operating limitations. The formulated optimization problem is handled employing the genetic algorithm. The results show that more syngas production in the optimized hydrogen unit is one of the main reasons for higher ammonia synthesis in the considered plant. Applying optimal conditions on the process increases ammonia production potential from 1890 to 2179 mol s−1.  相似文献   
93.
Reducing the Platinum (Pt) loading while maintaining the performance is highly desired for promoting the commercial use of proton exchange membrane fuel cells (PEMFCs). Different methods have been adopted to fabricate catalyst layers (CLs) with low Pt loading, including utilizing lower Pt/C catalysts (MA), mixing high Pt/C catalysts with bare carbon black particles (MB), and reducing CL thickness while maintaining high Pt/C ratio (MC). In this study, self-developed pore-scale model is adopted to investigate the performance of the three Pt reduction methods. It is found that MA shows the best performance while MB shows the worst. Then, effects of Pt dispersion are further explored. The results show that denser Pt sites will result in higher local oxygen flux and thus higher local transport resistance. Therefore, MA method, which shows the better Pt dispersion, leads to improved performance. Third, CLs with quasi-realistic structures are investigated. Higher tortuosity resulting from the random pores produces higher bulk resistance along the thickness direction, while MA still exhibits the best performance. Finally, improved CL structures are investigated by designing perforated CL structures. It is found that adding perforations can significantly reduce the bulk transport resistance and can improve the CL performance. It is demonstrated that CL structure plays important roles on performance, and there are still huge potentials to further improve CL performance by increasing Pt dispersion and optimizing CL structures.  相似文献   
94.
A dual-reflux pressure swing adsorption (DR-PSA) process was proposed and simulated to initially separate the blue coal gas, aiming to capture carbon dioxide (CO2) and enrich hydrogen (H2), simultaneously. With a feed flow rate of 7.290 slpm, a light product reflux flow rate of 0.505 slpm and the heavy product reflux flow rate of 3.68 slpm, the developed DR-PSA process could capture CO2 up to 64.01% with a recovery of 99.60% and enrich H2 up to 34.66% with a recovery of 97.63% from the blue coal gas (36.2% N2/28.5% H2/13.9% CO/12.7% CO2/8.7% CH4). In addition, in order to optimize the process, the effects of various operating parameters on the DR-PSA process performance in terms of product purity and recovery were discussed in detail, including the feed position, the light product reflux ratio and the heavy product reflux ratio. Moreover, the dynamic distribution behaviors of pressure, temperature and gas-solid concentration were presented to explain and evaluate the process separation performance in depth under different operating conditions.  相似文献   
95.
People in the Middle East are facing the problem of freshwater shortages. This problem is more intense for a remote region, which has no access to the power grid. The use of seawater desalination technology integrated with the generated energy unit by renewable energy sources could help overcome this problem. In this study, we refer a seawater reverse osmosis desalination (SWROD) plant with a capacity of 1.5 m3/h used on Larak Island, Iran. Moreover, for producing fresh water and meet the load demand of the SWROD plant, three different stand‐alone hybrid renewable energy systems (SAHRES), namely wind turbine (WT)/photovoltaic (PV)/battery bank storage (BBS), PV/BBS, and WT/BBS are modeled and investigated. The optimization problem was coded in MATLAB software. Furthermore, the optimized results were obtained by the division algorithm (DA). The DA has been developed to solve the sizing problem of three SAHRES configurations by considering the object function's constraints. These results show that this improved algorithm has been simpler, more precise, faster, and more flexible than a genetic algorithm (GA) in solving problems. Moreover, the minimum total life cycle cost (TLCC = 243 763$), with minimum loss of power supply probability (LPSP = 0%) and maximum reliability, was related to the WT/PV/BBS configuration. WT/PV/BBS is also the best configuration to use less battery as a backup unit (69 units). The batteries in this configuration have a longer life cycle (maximum average of annual battery charge level) than two other configurations (93.86%). Moreover, the optimized results have shown that utilizing the configuration of WT/PV/BBS could lead to attaining a cost‐effective and green (without environmental pollution) SAHRES, with high reliability for remote areas, with appropriate potential of wind and solar irradiance.  相似文献   
96.
Food additives, often used to guarantee the texture, shelf-life, taste, and appearance of processed foods, have gained widespread attention due to their increased link to the growing incidence of chronic diseases. As one of the most common additives, carrageenans have been used in human diets for hundreds of years. While classified as generally recognized as safe (GRAS) for human consumption, numerous studies since the 1980s have suggested that carrageenans, particularly those with random coil conformations, may have adverse effects on gastrointestinal health, including aggravating intestinal inflammation. While these studies have provided some evidence of adverse effects, the topic is still controversial. Some have suggested that the negative consequence of the consumption of carrageenans may be structure dependent. Furthermore, pre-existing conditions may predispose individuals to varied outcomes of carrageenan intake. In this review, structure–function relationships of various carrageenans in the context of food safety are discussed. We reviewed the molecular mechanisms by which carrageenans exert their biological effects. We summarized the findings associated with carrageenan intake in animal models and clinical trials. Moreover, we examined the interactions between carrageenans and the gut microbiome in the pathogenesis of gastrointestinal disorders. This review argues for personalized guidance on carrageenan intake based on individuals’ health status. Future research efforts that aim to close the knowledge gap on the effect of low-dose and chronic carrageenan intake as well as interactions among food additives should be conducive to the improved safety profile of carrageenans in processed food products.  相似文献   
97.
The current work introduces an enhancement in the performance of the microbial fuel cell through estimating the optimal set of controlling parameters. The maximization of both power density (PD) and the percentage of chemical oxygen demand (COD) removal were considered as the enhancement in the cell's performance. Three main parameters in terms of performance as well as commercialization are the system's inputs; the Pt which takes the range of 0.1‐0.5 mg/cm2, the degree of sulphonation in sulfonated‐poly‐ether‐ether‐ketone that changes in the range of 20‐80%, and the rate of aeration of cathode which varies between 10 and 150 mL/min. From the experimental dataset, two robust adaptive neuro‐fuzzy inference system models based on the fuzzy logic technique have been constructed. The comparisons between the models' outputs and the experimental data showed well‐fitting in both training and testing datasets. The mean squared errors of the PD model, for testing and whole datasets, were found 2.575 and 0.909 while for the COD model it showed 19.242 and 6.791, respectively. Then, based on the two fuzzy models, a Particle Swarm Optimization algorithm has been used to determine the best parameters that maximize both of the PD and the COD removal of the cell. The optimization process was utilized for single and multi‐object optimization processes. In the single optimization, the resulting maximums of the PD and the COD removal were found 62.844 (mW/m2) and 99.99 (%), respectively. Whereas, in the multi‐object optimization, the values of 61.787 (mW/m2) and 96.21 (%) were reached as the maximums for the PD and COD, respectively. This implies that, in both cases of optimization processes, the adopted methodology can efficiently enhance the microbial fuel cell performances than the previous work.  相似文献   
98.
Current ammonia production technologies have a significant carbon footprint. In this study, we present a process synthesis and global optimization framework to discover the efficient utilization of renewable resources in ammonia production. Competing technologies are incorporated in a process superstructure where biomass, wind, and solar routes are compared with the natural gas-based reference case. A deterministic global optimization-based branch-and-bound algorithm is used to solve the resulting large-scale nonconvex mixed-integer nonlinear programming problem (MINLP). Case studies for Texas, California, and Iowa are conducted to examine the effects of different feedstock prices and availabilities. Results indicate that profitability of ammonia production is highly sensitive to feedstock and electricity prices, as well as greenhouse gas (GHG) restrictions. Under strict 75% GHG reductions, biomass to ammonia route is found to be competitive with natural gas route, whereas wind and solar to ammonia routes require further improvement to compete with those two routes. © 2018 American Institute of Chemical Engineers AIChE J, 65: e16498 2019  相似文献   
99.
This paper attempted to show the application of particle swarm optimization in the prediction of the compressive strength of cement sandy soil from the curing period, porosity of sample and percentage of cement. The results of the study show that the unconfined compressive strength of the cement stabilized sandy soil increases with an increasing cement content curing time period. Moreover the compressive strength decreases with an increasing porosity. The compressive strength improvement due to cement treatment has a larger increase in samples with less porosity. In addition, particle swarm optimization algorithm is and accurate technique in estimation of compressive strength of cement stabilized sandy soil. In order to compare of existing correlations, a total number of 100 unconfined compressive tests and 15 scanning electron microscope tests have been conducted on cemented Babolsar sand. It can be concluded that compared to existing correlations models, particle swarm optimization algorithm models give more reliable prediction about compressive strength of cement satblized sandy soil. Moreover, the sensitivity analysis of the polynomial model shows that cement content and porosity have significant impact on predicting unconfined compressive strength.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号